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Abstract. Conventional data-worth (DW) analysis for soil water problems depends on physical 

dynamic models. The widespread occurrence of model structural errors and the strong nonlinearity of 

soil water flow may lead to biased or wrong worth assessment. By introducing the nonparametric 

data-worth analysis (NP-DWA) framework coupled with ensemble Kalman filter (EnKF), this 15 

real-world case study attempts to assess the worth of potential soil moisture observations regarding the 

reconstruction of fully data-driven soil water flow models prior to data gathering. The DW of real-time 

soil moisture observations after Gaussian process training and Kalman update was quantified with three 

representative information metrics, including the trace, Shannon entropy difference, and relative 

entropy. The sequential NP-DWA framework was examined by a number of cases in terms of the 20 

variable of interest, spatial location, observation error, and prior data content. Our results indicated that 

the overall increasing trend of the DW from the sequential augmentation of additional observations was 

susceptible to interruptions by localized surges due to never-experienced atmospheric conditions (i.e., 

rainfall events) within the NP-DWA framework. Fortunately, this performance degradation can be 

effectively alleviated by enriching training scenarios or the appropriate amplification of observational 25 

noise under extreme meteorological conditions. Nevertheless, a substantial expansion of the prior data 

content may cause an unexpected increase in DW of future potential observations due to the possible 

introduction of ensuing observation noises. Hence, high-quality and representative “small” data may be 

a better choice than unfiltered “big” data. Compared with the observations in the surface layer with the 

strongest time-variability, the soil water content in the middle layer robustly exhibited remarkable 30 
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superiority in the construction of model-free soil moisture models. An alternative monitoring strategy 

with a larger data-worth was prone to a higher DW assessment accuracy within the proposed NP-DWA 

framework. We also demonstrated that the DW assessment performance was jointly determined by ‘3C’, 

i.e., capacity of potential observation realizations to “capture” actual observations, correlation of 

potential observations with the variables of interest, and choice of DW indicators. Direct mapping from 35 

regular meteorological data to soil water content within the NP-DWA mitigated the adverse effects of 

nonlinearity-related interference, which thus facilitated the identification of the soil moisture 

covariance matrix, especially the cross-covariance. 

Keywords: Data worth; Nonparametric data assimilation; Soil moisture; Gaussian process 

 40 

1 Introduction 

As one of the few directly observable hydrological variables, soil water content (SWC) exhibits 

critical importance in optimal water resource management, irrigation and drainage schemes, fertilizer 

application, and crop production in agriculture (Liu et al., 2011; Akhtar et al., 2019; Dobriyal et al., 

2012; Gu et al., 2021). Various data assimilation (DA) approaches (Dunne and Entekhabi, 2005; Li and 45 

Ren, 2011; Reichle et al., 2008; Song et al., 2014) have been established to reconstruct the 

spatiotemporal dynamics of SWC from noisy or partial observations. The core of these traditional 

parametric filters is their reliance on repeated forward integrations of an explicitly known physical 

model of unsaturated flow, such as the HYDRUS (Šimůnek et al., 2006), Soil and Water Assessment 

Tool (SWAT) (Van Dam and Feddes, 2000), and Ross models (Ross, 2003; Zha et al., 2013). 50 

Currently, the ever-increasing availability of multi-source data from remote sensing (Montzka et al., 

2011; Shi et al., 2011), ground-based measurements (Li et al., 2018; Shuwen et al., 2005; Yang et al., 

2000), and numerical modeling has paved the way for the development of fully data-driven techniques 

within the DA framework. In particular, recent advances in machine learning-based DA schemes 

(Brajard et al., 2020; Brajard et al., 2021; Yamanaka et al., 2019) offer exciting new opportunities for 55 

extracting patterns and insights of soil moisture dynamics from data (Ju et al., 2018; Li et al., 2020; Liu 

et al., 2020; Wang et al., 2021a). For instance, Kashif Gill et al. (2007) proposed a hybrid DA 

methodology that combined support vector machines and the ensemble Kalman filter (EnKF) for soil 

moisture dynamics. Li et al. (2020) compared the performance of a physical-based model with DA and 

machine learning methods in terms of the simulation of soil water dynamics under synthetic and 60 
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real-world conditions. Wang et al. (2021a) and Wang et al. (2021b) further attempted to learn unknown 

relationships between SWC as well as its spatio-temporal gradients and highly accessible data via the 

Gaussian process (GP) regression. 

Notwithstanding the success of these model-free DA schemes built on machine learning for 

unsaturated flow, essential caveats and limitations have hampered their further adoption and impact. 65 

First, the amount of data required to infer nonlinear relationships in unsaturated flow problems may be 

overwhelming (Hughes, 1968), thus greatly increasing the data collection budget. Subsequently, 

addressing the abovementioned explosive data growth is also a challenging and time-demanding task 

requiring an extensive computational infrastructure. Second, the performance and quality of the 

knowledge extracted by machine learning algorithms are highly dependent on the quality and 70 

suitability of data (García-Gil et al., 2019). Unfortunately, data gathering is rarely perfect, and data 

corruption often occurs (Wang et al., 2018). The identification of the multi-source SWC data quality or 

measurement error is not an easy task. This limitation instead can create extra uncertainties in DA 

systems (Kisekka et al., 2015) . Third, it is the diversity of scenarios contained in prior data rather than 

its volume that is more decisive for the generalization ability of machine learning methods (Wang et al., 75 

2020) . Direct data fusion without screening may instead induce accidental correlations in learning 

algorithms, thereby diminishing their generalization ability (García et al., 2016). To avoid the 

overloaded monitoring cost due to redundant data, it is essential to develop a framework to assess the 

worth of alternative sampling strategies prior to data collection. 

Data worth, sometimes called data information content or data impact, of a design is often defined as 80 

its individual capability to reduce uncertainty associated with a prediction goal, or to maximize some 

related measure of data utility. Over the past decades, two main types of sophisticated DW analysis 

frameworks have been proposed to identify the most informative monitoring strategy in hydrology, 

namely, one type based on sensitivity analysis (Dausman et al., 2010; Fienen et al., 2010; Hill and 

Tiedeman, 2006) and the other within a fully Bayesian framework (Dai et al., 2016; Neuman et al., 85 

2012; Nowak et al., 2012). The former approaches are computationally fast, but these methods require 

model calibration and assume linear models (Finsterle, 2015). The latter methods are derived based on 

the law of the total possibility, without assumptions of the model and of the distributions of 

observations and model parameters. Nevertheless, both well-established frameworks are predicated on 

the availability of the underlying physical models. For example, Man et al. (2016) evaluated the 90 
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expected value of alternative SWC sampling strategies with respect to the estimation of soil hydraulic 

parameters in the Hydrus-1D model, while Finsterle (2015) examined the worth of datasets potentially 

applicable for the calibration of geothermal reservoir models. Within such parametric data-worth 

analysis frameworks, however, the strong nonlinearity of soil water problems (De Lannoy et al., 2006; 

Leube et al., 2012; Yeh et al., 1985) and the prevalence of model structural errors (Zhang et al., 2019) 95 

are highly likely to lead to biased data worth (Wang et al., 2018; Wang et al., 2020). Ultimately the 

reliability of optimal design of monitoring networks based on such evaluations is greatly compromised. 

Fortunately, the superiority of data-driven algorithms in handling nonlinearities and structural errors 

in unsaturated flow has been well demonstrated in our previous studies (Wang et al., 2021a; Wang et 

al., 2021b). With the explosive growth of big data, how to evaluate the worth of multi-source data in 100 

this new data mining approach is becoming a critical issue. Several recent works in the field of 

statistical learning have bloomed in identifying and removing irrelevant and redundant information 

from big data, such as feature selection (Chandrashekar and Sahin, 2014; Hall, 1999) and instance 

reduction (Al-Akhras et al., 2021; Olvera-López et al., 2010). To the best of our knowledge, few 

studies have systematically evaluated the worth of future observations regarding the construction of 105 

fully data-driven models prior to data gathering. As a follow-up study of Wang et al. (2018) and Wang 

et al. (2020), one major contribution of this study is the first embedding of a purely data-driven model 

into the Bayesian data-worth analysis framework, referring to as the nonparametric data-worth analysis 

(NP-DWA). Similar to traditional DW analysis, the proposed NP-DWA consists of prior, posterior, and 

preposterior stages (Dai et al., 2016). The preposterior analysis evaluates the anticipated worth of future 110 

observations regarding the construction of purely data-driven models, for which possible distributions 

are predicted in advance by conditioning on prior data. 

There is a consensus in the field of statistics that “the highest accuracy results that an inductive 

learning system can achieve depend on the quality of data and on the appropriate selection of a learning 

algorithm for the data” (Pechenizkiy et al., 2006). In other words, once the algorithm specified, the 115 

significance of data noise on learning accuracy as almost the only factor should not be overlooked. 

Considering the powerful ability of dealing with observational noises of the ensemble Kalman filter 

(EnKF) (Hamilton et al., 2017; Li et al., 2018), another innovation of this study is the introduction of 

EnKF into our NP-DWA framework. In conventional DW analysis, the worth of data is primarily 

embodied in its ability to be utilized or calibrated to adjust physical parameters (Dai et al., 2016; 120 
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Finsterle, 2015; Man et al., 2016). In the proposed NP-DWA, nevertheless, future observations are first 

used to construct data-driven models in the forecast step and then sequentially assimilated with the 

Kalman update in the analysis step. Ultimately, its combined capacity to reduce system uncertainties in 

these two ways is defined as its worth. Furthermore, as a typical sequential DA scheme, the EnKF 

facilitates the dynamic models as well as its hyperparameters to be updated in real time, so the data 125 

utility to modeling system can be detected instantaneously. Eventually, the sampling scheme can be 

dynamically adjusted to save the monitoring and analysis costs. 

Most previous studies are based on synthetic cases, and data-worth analysis in the context of 

dynamically evolving soil moisture profiles was still poorly studied in a real-world case. For nonlinear 

problems, nevertheless, the estimation variance and more sophisticated measures of data utility depend 130 

on the actual values of measurements, which are still unknown prior to collection (Leube et al., 2012). 

It will be more convincing to investigate the data worth regarding the reconstruction of fully 

data-driven models under real-world cases for unsaturated flow. With the aid of observed data retrieved 

from three typical stations with different climate regimes, we aim to shed light on the following 

questions: (1) as opposed to the traditional way of utilizing data (to calibrate physical parameters), is 135 

the worth of observations capable of being accurately quantified by NP-DWA in this new, purely 

data-driven approach? (2) Given multiple prediction objectives, how does the DW (in the form of 

various indices) evolve under different hydrometeorological conditions in the determination of fully 

data-driven soil moisture dynamics? (3) How does the proposed NP-DWA respond to the presence of 

multiple levels of data noise? It is strived that this study can provide guidance in the design of future 140 

monitoring strategies within the fully data-driven soil water flow models for real-world problems. 

The remainder of this paper is organized as follows: Sect. 2 first summarizes the experimental data 

and methods. Thereinto, the principles of Bayesian DW analysis, nonparametric DA, and the hybrid 

framework are detailed. Sect. 3 presents the results, and a discussion is contained in Sect. 4. Finally, 

conclusions are outlined in Sect. 5. 145 

2 Methodology 

In Wang et al. (2021a), a nonparametric sequential data assimilation scheme (Kalman-GP) has been 

proposed based on the filtering equations of EnKF and data-driven modeling with GP. On top of that, 

this paper further develops a nonparametric data-worth analysis framework to assess the potential 

worth of future observations in the reconstruction of dynamical soil water flow models prior to data 150 
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collection. Considering that the Kalman-GP have been described in detail in Wang et al. (2021a), only 

a brief introduction to it is presented here. 

2.1 Construction of GP Dynamic Models 

  We aim to determine a Gaussian stochastic process to approximate the relationship between input 

data x and state variable of interest y. It should be noted that input x may consist of any relevant 155 

information in addition to the time and location of quantity of interest. As defined in Rasmussen (2003) 

and Williams and Rasmussen (2006), a GP G(x) can be fully specified by a mean function 𝜇(x) and 

covariance function 𝑘(𝒙, 𝒙′), i.e., 𝐺(𝒙)~𝑁(𝜇(𝒙), 𝑘(𝒙, 𝒙′)). In this study, a linear mean function and an 

anisotropic squared exponent covariance function are specified (Zhang et al., 2019) as: 

𝜇(𝒙) = 𝜷T𝒙 (1) 

𝑘(𝒙, 𝒙′) = 𝜎2𝑒𝑥𝑝⁡ [−∑
(𝑥𝑙 − 𝑥𝑙

′)2

𝜏𝑙
2

𝑑

𝑙=1

] (2) 

where 𝜷 is vector containing d linear coefficients, i.e., 𝜷 = {𝛽1, ⁡𝛽2, … , ⁡𝛽𝑑}; d is the dimension of x; 160 

𝜎2 controls the marginal variance in the output; and 𝜏1, 𝜏2,…, 𝜏𝑑 determine the dependence strength 

in each of the component directions of x. 

  Next, let 𝑿 = {𝒙𝑖}𝑖=1
𝑁  denote the input of N training datasets, while the corresponding output can be 

represented as 𝒚 = (𝑦1, 𝑦2, … , 𝑦𝑁)T. Then, the hyperparameters of the GP, ∅ = {𝜷, 𝜎2, 𝝉}, can be 

inferred from the training datasets {𝑿, 𝒚} via log marginal likelihood maximization: 165 

𝐿 = log𝑝(𝒚|X, ∅) = −
1

2
(𝒚 − 𝝁)TΣ−1(𝒚 − 𝝁) −

1

2
log|Σ| −

𝑛

2
log 2π (3) 

where 𝝁 denotes the prior mean vector, and Σ denotes the covariance matrix whose elements in the 

ith row and jth column constitute Σ𝑖𝑗 = 𝑘(𝒙𝑖 , 𝒙𝑗). The GPML MATLAB toolbox (version 4.2), as 

documented in Williams and Rasmussen (2006), was adopted for GP inference in this study 

(http://www.gaussianprocess.org/gpml/code/matlab/doc/).  

Finally, the posterior mean 𝒚∗ can be predicted for any new input 𝑿∗ as: 170 

𝒚∗ = 𝝁∗ + Σ∗
T
Σ−1(𝒚 − 𝝁) (4) 

where 𝝁∗ denotes the prior mean of 𝜇(𝑿∗) and Σ∗ is calculated as Σ𝑖
∗ = 𝑘(𝒙𝑖 , 𝑿𝑗

∗). 

2.2 The Kalman Update in Nonparametric Data Assimilation Scheme 

  Similar to the conventional EnKF method (Evensen, 2003), the model-free DA strategy also 

comprises forecast and analysis steps. At the forecast step at t=k, 𝑁1  GP dynamic models are 

https://doi.org/10.5194/hess-2023-34
Preprint. Discussion started: 22 February 2023
c© Author(s) 2023. CC BY 4.0 License.



7 

 

constructed in the light of {(𝑿1:𝑘−1, 𝒚1:𝑘−1)1, … , (𝑿1:𝑘−1, 𝒚1:𝑘−1)𝑖 , … , (𝑿1:𝑘−1, 𝒚1:𝑘−1)𝑁1} 175 

independently via Eqs. 1-3. Here, (𝑿1:𝑘−1, 𝒚1:𝑘−1) represents all available data points from t=1 to (k-1) 

and i is the ensemble member index. Hence an ensemble of 𝒚∗ at the current time step, 𝒀𝑘
𝑓
, can be 

forecasted via Eq. 4, which can be expressed as: 

𝒀𝑘
𝑓
= [𝒚𝑘,1

∗ , 𝒚𝑘,2
∗ , … , 𝒚𝑘,𝑖

∗ , … , 𝒚𝑘,𝑁1
∗ ]

T
 (5) 

where superscripts f refers to forecast; 𝒚𝑘,𝑖
∗  represents the forecasted state vector of interest for the ith 

GP model that was constructed at t=k. 180 

In the analysis step of the EnKF, the resultant forecasted state vector at t=k, 𝒀𝑘
𝑓
, is updated via the 

assimilation of current observation data, 𝒅𝑘
𝑜𝑏𝑠: 

𝒀𝑘
𝑎 = 𝒀𝑘

𝑓
+ 𝑲𝑘(𝒅𝑘

𝑜𝑏𝑠 −𝑯𝒀𝑘
𝑓
) (6) 

where 𝒀𝑘
𝑎 denotes the posterior estimates for the ensemble of state vectors conditional on the observed 

data at t=k; superscript a indicates analysis; and 𝑯 is the observation operator, which represents the 

relationship between the state and observation vectors.  185 

The Kalman gain at t=k, 𝑲𝑘, can be defined as: 

𝑲𝑘 = 𝑪𝑘
𝑓
𝑯𝑇(𝑯𝑪𝑘

𝑓
𝑯𝑇 + 𝑹𝑘)

−1 (7) 

where 𝑹𝑘 is the error covariance matrix of the observations; and 𝑪𝑘
𝑓
 is the covariance matrix of the 

state vector at t=k, which can be approximated as: 

𝑪𝑘
𝑓
≈

1

𝑁𝑒 − 1
∑{[𝒚𝑘,𝑖

𝑓
− 〈𝒀𝑘

𝑓〉][𝒚𝑘,𝑖
𝑓
− 〈𝒀𝑘

𝑓〉]
T
}

𝑁1

𝑖=1

 (8) 

where 𝒚𝑘,𝑖
𝑓

 is equivalent to 𝒚𝑘,𝑖
∗  and 〈𝒀𝑘,𝑖

𝑓 〉 denotes the ensemble mean of 𝒀𝑘
𝑓
. 

2.3 Nonparametric Data-worth Analysis Framework 190 

  Following the methodologies of Neuman et al. (2012) and Dai et al. (2016), data-worth analysis of 

future monitoring networks within the aforementioned NP-DWA framework also consists of three 

stages. The whole workflow of the NP-DWA framework is depicted in Fig. 1. 

2.3.1 Prior Stage 

  At the prior stage (0 < 𝑡 ≤ 𝑇𝑝), the integration of GP dynamic models and EnKF with an ensemble 195 

size of 𝑁1 is implemented to sequentially train and assimilate the prior data via Eqs. 1–8. Here, all 

available prior datasets from t=0 to t=𝑇𝑝 are denoted as 𝑨 = 𝒚1:𝑇𝑝 = 𝒅1:𝑇𝑝
𝑜𝑏𝑠 , while the corresponding 

GP input is denoted as 𝑿1:𝑇𝑝. Then, a set of 𝑁𝑒 hypothetical observations can be generated, denoted as 
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𝑩𝑘,𝑖 = 𝑯𝑘𝒚𝑘,𝑖
𝑓

 (𝑘 = 𝑇𝑝 + 1, 𝑇𝑝 + 2,… , 𝑇𝑡; 𝑖 = 1, 2, … , 𝑁1), via Eq. 4. 𝑇𝑡 is the total simulation time. 

Moreover, prior prediction statistics (mean and covariance) of posterior vector 𝒀𝑘, i.e., 𝐸(𝒀|𝑨) and 200 

𝐶𝑜𝑣(𝒀|𝑨), can be yielded conditional on {𝑨}, which can be denoted as 𝑬1 and 𝑪1, respectively, for 

the sake of simplicity. 

 

Figure 1. The workflow of nonparametric data-worth analysis framework coupled with Ensemble Kalman Filter 

(EnKF) 205 

 

2.3.2 Preposterior Stage 

  At the preposterior stage (𝑇𝑝 + 1 < 𝑡 ≤ 𝑇𝑡), for each possible data 𝑩𝑘,𝑖 at t=k, 𝑁2 realizations 

satisfying a Gaussian distribution are further generated. The ensemble mean is the value of 𝑩𝑘,𝑖, while 

the variance is the measurement error. Since this method is recursive, the time index k is omitted in the 210 

following equations. Then, the integration of GP models and EnKF is again implemented through a set 

of 𝑁2 Monte Carlo realizations for each of the 𝑁1 hypothetical observations. This allows us to 

calculate prediction statistics of the posterior state vector 𝒀𝑖𝑗 (𝑖 = 1, 2, … , 𝑁1; 𝑗 = 1, 2, … , 𝑁2), i.e., 

𝐸(𝒀𝑖 |A, 𝑩𝑖)  and 𝐶𝑜𝑣(𝒀𝑖 |A, 𝑩𝑖) , conditional on {𝑨, 𝑩𝑖} . Finally, quantities 𝐸𝑩|𝑨𝐸(𝒀|𝑨,𝑩) , 

𝐸𝑩|𝑨𝐶𝑜𝑣(𝒀|𝑨,𝑩), and 𝐶𝑜𝑣𝑩|𝑨𝐸(𝒀|𝑨,𝑩) can be yielded by averaging over the collection of 𝑁1 × 𝑁2 215 

realizations. It should be emphasized that 𝐸𝑩|𝑨𝐸(𝒀|𝑨,𝑩)  and 𝐸𝑩|𝑨𝐶𝑜𝑣(𝒀|𝑨,𝑩)  represent the 

preposterior prediction mean and uncertainty after the addition of future possible data B, which can be 

Prior Stage:

➢ Train GP dynamic models in the light of

➢ Assimilate prior available data A to generate additional potential

observations B by the EnKF

➢ Calculate the prior prediction statistics conditional on ,i.e.,

and

Preposterior Stage:

➢ Train GP dynamic models with {A, B} and sequentially assimilate them

to obtain the resultant statistics including and

➢ Calculate the expected data-worth in the form of , SED, and RE

Posterior Stage:

➢ Train GP dynamic models with A and additionally available data and

sequentially assimilate them to obtain the posterior statistics including

and

➢ Calculate the reference data-worth in the form of , SED, and RE
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denoted as 𝑬2 and 𝑪2, respectively. 

  To quantify the expected data-worth of potential measurements, three commonly considered 

information metrics, including the trace (𝑇𝑟), Shannon entropy difference (SED), and relative entropy 220 

(RE), are introduced in this study. 𝑇𝑟 and SED offer scalar indices to measure the decrease in variance 

and covariance, respectively, while the RE comprehensively quantifies both mean and covariance 

effects. 

  (1) Trace 

As a scalar indicator (Dai et al., 2016), 𝑇𝑟 quantifies the DW in terms of variance reduction as 225 

follows: 

𝑇𝑟 = 𝑇𝑟(𝑪1) − 𝑇𝑟(𝑪2) (9) 

where 𝑇𝑟(∗) denotes the trace (sum of the diagonal entries) of a matrix. 

  (2) Shannon entropy difference 

  According to Shannon (1949), the Shannon entropy (SE) of PDF p(x) can be defined as: 

𝑆𝐸(𝑝) = −∫𝑝(𝑥) ln 𝑝(𝑥) 𝑑𝑥, 𝑥 ∈ 𝑅 (10) 

  The SED between the prior and preposterior PDFs can also be considered to quantify the information 230 

content extracted from additional observations. Assuming that these two PDFs are both Gaussian in the 

EnKF model, the SED can be expressed in terms of covariance reduction (Xu, 2007) as: 

𝑆𝐸𝐷 =
ln det(𝑪1)

2
−
ln det(𝑪2)

2
=
ln det(𝑪1𝑪2

−1)

2
 (11) 

where det(∗) is the determinant of a matrix. 

  (3) Relative entropy 

  Similar to the SED, the RE also provides a measure of the information content of the preposterior 235 

PDF with respect to the prior PDF. In addition to uncertainty reduction, the influence of future data on 

the mean behavior of PDFs is considered (Singh et al., 2013; Zhang et al., 2015). Considering that the 

prior and preposterior PDFs are n-dimensional Gaussian functions, the RE can be defined as: 

𝑅𝐸 =
1

2
(𝑬2 − 𝑬1)

𝑇𝑪1
−1(𝑬2 − 𝑬1) +

1

2
[ln det⁡(𝑪1𝑪2

−1) + 𝑇𝑟(𝑪2𝑪1
−1) − 𝑛] (12) 

  Finally, the expected DW of 𝑩𝑘 can be estimated in the form of the above three indices prior to data 

gathering. Similar procedures are repeated until the final time t=𝑇𝑡 is reached. 240 

2.3.3 Posterior Stage 

At the posterior stage (𝑇𝑝 + 1 < 𝑡 ≤ 𝑇𝑡), the available actual dataset 𝑩′ is incorporated into the GP 
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training datasets and assimilated in a sequential manner. The actual mean and covariance of posterior 

state vector Y, i.e., 𝐸(𝒀|𝑨,𝑩′) and 𝐶𝑜𝑣(𝒀|𝑨,𝑩′), respectively, are obtained conditional on {𝑨, 𝑩′}. 

The reference data-worth in the form of the various indices can be calculated via Eqs. 9–12, where 𝑬2 245 

and 𝑪2 are replaced with 𝐸(𝒀|𝑨,𝑩′) and 𝐶𝑜𝑣(𝒀|𝑨,𝑩′), respectively. 

3 Description of experimental data and model setup 

3.1 Data Sources and Site Description 

  Three typical sites, including Falkenberg (52.1669 N, 14.1241 E), Cape_Charles_5_ENE (37.2907 N, 

75.9270 W, hereafter referred to as Cape), and DAHRA (15.4035 N, 15.4320 W) were selected from 250 

the International Soil Moisture Network (ISMN, https://ismn.geo.tuwien.ac.at/en/) to evaluate the 

performance of the proposed NP-DWA framework under different soil types and climatic regimes. 

According to the dominant fraction of clay, silt, and sand for two layers (topsoil: 0.0–0.3 m, subsoil: 

0.3–1.0 m) provided by ISMN, we use the USDA soil texture classification and classified the soil at 

three sites. The soil at Falkenberg is sandy loam, and the DAHRA soil is loamy sand. The topsoil and 255 

subsoil at Cape are clay loam and loamy clay, respectively. At these three sites, the in situ volumetric 

SWC was operationally measured with TRIME-EZ (IMKO), Stevens Hydraprobe II Sdi-12 (Stevens 

Water Inc.), and ThetaProbe ML2X (Delta-T Devices) instruments, respectively. The measurement 

depths were (1) 0.08, 0.15, 0.30, 0.45, 0.60, and 0.90 m at the Falkenberg site, (2) 0.05, 0.10, 0.20, 0.50, 

and 1.00 m at the Cape site, and (3) 0.05, 0.10, 0.50, and 1.00 m at the DAHRA site. The measurement 260 

error was assumed to be 0.02 cm3/cm3 unless otherwise specified.  

Apart from soil water measurements at different depths, the daily precipitation and air temperature at 

the height of 2 meters were obtained from the ISMN. At each site, 200-day time series (from January 

15 and August 2 in 2005 at the Falkenberg site, from April 24 to November 9 in 2004 at the Cape site, 

and from April 9 to October 25 in 2011 at the DAHRA site) were collected in this study, as shown in 265 

Fig. 2. Having a continental climate, the Falkenberg receives frequent but less intense precipitation 

during the simulation period. The Cape has a humid subtropical climate with the highest rates rainfall 

among the three sites, and there were a few rainstorm events during the study period (e.g., up to 150 

mm/d on September 8, 2014). The region of DAHRA has a tropical climate with well-defined dry and 

humid seasons. The early stage of the simulation is in its dry season, with little to no rainfall. The late 270 

stage is in its humid season when frequent but less intense rainfall events occurs and the daily average 

air temperature is about 30 ◦C. 
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Figure 2. The temporal evolutions of soil moisture at various depths, daily rainfall, and mean daily air temperature 

(AT) at 2 meters height at Falkenberg, Cape, and DAHRA, respectively. Note that the red area indicates the 275 

preposterior or posterior stage 

 

3.2 Model Simulation Setup and Case Design 

  The key parameters of this study are summarized in Table 1. Each site is represented by a 

one-dimensional soil column with a height of 1 m, which is discretized into 2cm grids with local 280 

refinement of 1-cm monitoring depth intervals, i.e., z=0.15 m and 0.45 m at the Falkenberg site and 

z=0.05 m at the Cape and DAHRA sites. At each time step, 𝑁1 = 50 GP-based dynamic models of 

unsaturated flow are constructed. The GP model input x includes the observation time, depth, daily 

precipitation, and air temperature, while the output is the corresponding soil moisture. The state vector 

y comprises the soil moisture for all nodes at each site, and the trained and assimilated observations 285 

𝒅𝑜𝑏𝑠 refer to the available soil moisture at all observed depths (as described in Sect. 3.1). 

  We illustrate our approach based on a set of real-world test cases, as listed in Table 2. The 

performance of the three indices, namely, 𝑇𝑟, SED, and RE, in data-worth quantification are compared 

at all three sites. In this study, the worth of potential observations regarding the retrieval of three 

quantities of interest (QoI), including θ1.00
ave

, θ0.60
ave

, and θ0.30
ave

, is evaluated. Here, θ1.00
ave

, θ0.60
ave

, and θ0.30
ave

 290 

represent the average soil moisture in the top 1.00 m, 0.60 m, and 0.30 m, respectively. A comparison 

among cases TC1, TC2, and TC3, is designed to investigate the data-worth response of surface (θS), 
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middle (θM), and deep (θD) SWC regarding the above different prediction objectives. The prior datasets 

entering these cases comprise of SWC at various depths, daily precipitation, and air temperature over 

the first 80 days, as shown in the gray areas of Fig. 2. The subsequent 20-day data (red areas in Fig. 2) 295 

are augmented as additional data for reference DW assessment in the posterior stage. 

Table 1. The summary of key parameters 

Parameter Value 

Description of soil column 

Soil column height [m] 1.00 

No. of Nodes 53 (Falkenberg)/52 (Cape&DAHRA) 

Number of realizations 

𝑁1 50 

𝑁2 50 

Prior values of GP hyperparameters 

𝜏1, 𝜏2, 𝜏3, 𝜏4 1 

𝜎2 0.5 

𝛽1, 𝛽2, 𝛽3, 𝛽4 0 

Table 2. The summary of designed test cases and main characteristics 

Case Name Potential 

Observation 

Observation Error Prior Data (d) Variable of Interest 

TC1 TC1-1 θS 0.022 80 θ1.00
ave

 

TC1-2 θM 0.022 80 θ1.00
ave

 

TC1-3 θD 0.022 80 θ1.00
ave

 

TC2 TC2-1 θS 0.022 80 θ0.60
ave

 

TC2-2 θM 0.022 80 θ0.60
ave

 

TC2-3 θD 0.022 80 θ0.60
ave

 

TC3 TC3-1 θS 0.022 80 θ0.30
ave

 

TC3-2 θM 0.022 80 θ0.30
ave

 

TC3-3 θD 0.022 80 θ0.30
ave

 

TC4 θS 0.012 80 θ1.00
ave

 

TC5 θS 0.042 80 θ1.00
ave

 

TC6 θS 0.022 40 θ1.00
ave

 

TC7 θS 0.022 180 θ1.00
ave

 

TC8 θS, θM 0.022 80 θ1.00
ave

 

TC9 θS, θM, θD 0.022 80 θ1.00
ave
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Notes: θS, θM, and θD refer to soil moisture in the surface, middle, and deep layers, respectively; θ1.00
ave

, θ0.60
ave

, 

and θ0.30
ave

 refer to average soil moisture in the top 1.00 m, 0.60 m, and 0.30 m, respectively. 300 

 

  As stated in Pechenizkiy et al. (2006) and Zhu and Wu (2004), the maximum accuracy of statistical 

learning algorithms mainly depends on the quality of training data, in addition to the inherent bias in 

the algorithm itself. In other words, the magnitude and accuracy of the expected worth of driving data 

in machine learning-based DA may be closely related to the noise level. Thus, two additional test cases 305 

(TC4 and TC5) are considered to evaluate the performance of the proposed NP-DWA framework under 

different measurement errors. The soil moisture measurement error variance values of 0.012 and 0.042 

are assumed in TC4 and TC5, respectively, to be compared to a value of 0.022 in TC1-1. 

Moreover, test cases TC6 and TC7 differ from test case TC1-1. These test cases are designed to 

investigate the influence of the prior data content on data-worth analysis, which facilitates the 310 

determination of the required prior information content to ensure the accuracy of data-worth 

assessment. The 80-day prior data in test case TC1-1 are reduced backward in time to 40 days in test 

case TC6 and augmented forward to 180 days in test case TC7. In addition, test cases TC1-1, TC8, and 

TC9 consider the composite DW of different combinations of monitoring schemes. The comprehensive 

contributions of the surface SWC jointly with the middle and/or deep ones are compared with its 315 

individual contribution. 

3.3 Evaluation setup 

To compare the relative differences in data-worth estimation accuracy under the various test 

scenarios, the mean absolute percentage error (MAPE) between the expected and reference data-worth 

in the form of 𝑇𝑟, SED, and RE is defined as: 320 

𝑀𝐴𝑃𝐸 =
1

𝑇𝑡 − 𝑇𝑝
∑ |

𝐷𝑊𝑘
𝐸𝑥𝑝𝑒𝑐𝑡

− 𝐷𝑊𝑘
𝑅𝑒𝑓𝑒𝑟

𝐷𝑊𝑘
𝑅𝑒𝑓𝑒𝑟

|

𝑇𝑡

𝑘=𝑇𝑝+1

 (13) 

where 𝐷𝑊𝑘
𝐸𝑥𝑝𝑒𝑐𝑡

 and 𝐷𝑊𝑘
𝑅𝑒𝑓𝑒𝑟

 denote the expected and reference DW values, respectively, at time 

step t=k. 

4 Results and discussions 

4.1 Optimal Monitoring Location for the Multiple Predictive Objectives (TC1/TC2/TC3) 

  Fig. 3 shows the probability distributions of the generated potential observation realizations as well 325 

as their ensemble mean and the corresponding actual observations of the surface (θS), middle (θM), and 
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deep (θD) soil moisture at three sites. Only the results on the 81st, 90th, and 99th days are presented here. 

Overall, the 𝑁1 = 50  potential realizations could “capture” the actual SWC observations with 

acceptable accuracy. Specifically, the forecasted middle SWC exhibited a considerably more robust 

‘capturing’ performance with sustained better proximity of potential and actual θM throughout the 330 

simulation period. This occurred especially pronounced at the Cape site. For example, both surface and 

deep layers at Cape may be at risk of poor fit of potential observations to measurements (Fig. 3d and 

Fig. 3w), while the generated middle SWC is always fairly well approximated to the corresponding 

actual values in Fig. 3(m-o). 

 335 

Figure 3. The probability distributions (dotted curved line) of potential observation realizations as well as their 

mean (dotted vertical line) and the corresponding actual soil water content (SWC) observation (solid line) in the 

surface, middle, and deep layers on the 81st, 90th, and 99th day at Falkenberg, Cape, and DAHRA, respectively 

 

  Based on the above potential observations, their expected data-worth regarding the retrieval of θ1.00
ave

, 340 

θ0.60
ave

, and θ0.30
ave

 can be quantified in the form of Tr, SED, and RE, as depicted in Fig. 4. Meanwhile, for 

ease of analysis, Fig. 5 compares the covariance matrixes of entire soil moisture profile in the prior 

stage, preposterior stage, and posterior stage. Only the results from the 81st day to 90th day at 

Falkenberg are revealed here. It can be observed that despite an overall increasing trend over time, the 

values of expected DW were prone to local spikes due to changes in the atmospheric boundary 345 

conditions such as rainfall. First of all, this general trend of increase should be attributed to the 
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sequential augmentation of potential observations based on existing prior data, resulting in the 

cumulative values of DW over time. However, abrupt changes in external forcing, such as 

unexperienced rainfall events on the 88th day at the Falkenberg, could trigger temporal extrapolation of 

statistical learning (Li et al., 2020; Minns and Hall, 1996; Xu and Valocchi, 2015), which in turn led to 350 

a surge in prior predictive uncertainty, i.e., 𝑪1 = 𝐶𝑜𝑣(𝒀|𝑨) (the 1st column of Fig. 5). Fortunately, 

joint GP training and sequential assimilation of real-time potential observations can effectively lower 

the risk of such irrational extrapolation (Wang et al., 2021a; Wang et al., 2021b), allowing these 

temporal mutations to be substantially attenuated at the preposterior stage [i.e., 𝐶2 = 𝐸𝐵|𝐴𝐶𝑜𝑣(𝑌|𝐴, 𝐵)] 

(the 2nd-4th column of Fig. 5). This uncertainty reduction brought about by the fusion of additional data 355 

became significantly larger when external forcing encountered mutations, which ultimately led to the 

localized surge in DW during rainfall events.  

 

Figure 4. The expected data-worth of potential soil moisture observations in the surface, middle, and deep layers 

in the form of trace (𝑇𝑟), Shannon entropy difference (SED), and relative entropy (RE), respectively, regarding the 360 

retrieval of average soil moisture in the top 0.30 m, 0.60 m, and 1.00 m at three sites 
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Figure 5. The covariance matrixes of soil moisture profiles from the 81st to 90th day at Falkenberg before (column 

1) and after potential (columns 2-4) and corresponding actual (columns 5-7) soil moisture observations in the 

surface, middle, and deep layers were fused, respectively 365 

 

Moreover, Fig. 4 also suggests that the optimal observation depth shifted as the prediction target 

changed. As expected, the surface SWC θS produced higher Tr, SED, and RE values regarding the 

estimation of 𝜃0.30
𝑎𝑣𝑒 . As the depth range of the average SWC to be estimated was extended downward, 
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the data-worth advantages of θM and θD began to emerge. Surprisingly, the potential middle SWC 370 

still exhibited a considerably higher superiority even in 𝜃1.00
𝑎𝑣𝑒  estimation. In other words, the soil 

moisture in the middle layer has the most robust advantage in data-worth. This may be due to the fact 

that the integration of surface or deep SWC only reduced the uncertainty within the corresponding 

depth ranges (the 2nd and 4th column of Fig. 5), whereas the augmentation of θM significantly decrease 

the covariance matrixes of the entire SWC profiles (the 3rd column of Fig. 5). This selection result of 375 

the optimal monitoring location seemingly contradicts previous findings within the traditional 

parametric DW analysis where the surface observations with the largest temporal variation always 

produced the greatest data worth, as reported in Dai et al. (2016) and Wang et al. (2018). This 

discrepancy is likely to depend on the different mechanisms that characterize soil moisture dynamics in 

the vertical direction between the two approaches. The traditional parametric unsaturated flow model 380 

follows the law of mass conservation-based physical governing equations (i.e., the 

Richardson–Richards equation, (Richards, 1931; Richardson, 1922)). The strongest time-varying nature 

of surface SWC was conducive to effective updating of the physical parameters in EnKF, eventually 

generating the maximum data-worth (Wang et al., 2018). However, the spatial prediction performance 

of data-driven methods substantially hinged on the similarity of data between different depths. 385 

Theoretically, there occurs an inherent delayed response of soil moisture profiles to rainfall events, 

which has been well-documented experimentally (Wierenga et al., 1986; Bresler et al., 1971; Vauclin et 

al., 1979). This causes the temporal changes in surface and deep SWC to be naturally asynchronous, 

thus rendering their representativeness in characterizing the whole soil moisture profile somewhat 

limited. Ultimately, the complete reliance on statistical and information-theoretic measures allowed the 390 

most representative middle SWC to establish the most robust superiority in DW. 

It can also be seen from Fig.4 that when using different information indices (i.e., 𝑇𝑟, SED, and RE) 

to quantify the data-worth, the optimal observation location selected is identical, regardless of soil 

textures and climatic regimes. This conclusion is generally in line with Wang et al. (2018) and Man et 

al. (2016). Furthermore, to quantify the data-worth assessment accuracy, Fig. 6 depicts the MAPE 395 

between the expected and reference data-worth in the form of Tr, SED, and RE of alternative 

monitoring schemes at the different depths. It can be observed that the surface SWC yielded the 

smallest MAPE when retrieving 𝜃0.30
𝑎𝑣𝑒 , regardless of the metric type. During the estimation of 𝜃0.60

𝑎𝑣𝑒  

and 𝜃1.00
𝑎𝑣𝑒 , nevertheless, the expected data-worth of θM more accurately and robustly approached the 
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reference counterparts with overall smaller MAPEs. We recall that this ranking of DW estimation 400 

accuracy was exactly in line with the ranking of the magnitude of their expected DW in Fig. 4. To be 

specific, a comparison of Fig. 4 and Fig. 6 reveals that potential observations with a larger expected 

DW are prone to a higher DW estimation accuracy due to its more robust ability of “imitating” the 

actual observations (Fig. 3). 

 405 

Figure 6. The MAPEs between expected and reference data-worth in the form of 𝑇𝑟, SED, and RE of potential soil 

moisture observations in the surface (S), middle (M), and deep (D) layers, respectively, regarding the retrieval of 

average soil moisture in the top 0.30 m, 0.60 m, and 1.00 m at three sites 

 

4.2 Effects of Observation Noise (TC1-1/TC4/TC5)  410 

  Fig. 7 shows the probability distributions of the potential observation ensemble as well as their mean 

and the corresponding actual observations of the surface SWC under different SWC noise levels. 

Similarly, only the results on the 81st, 90th, and 99th days are displayed. It can be observed that a higher 

noise level was not always detrimental but rather instead expanded the distribution width along the 

SWC-axis and produced a flatter curve. The risk of failure of the generated realizations to “capture” the 415 

real observations was thus reduced. Even on the 81st day at Falkenberg, for example, the increase in 

SWC error variance from 0.012 to 0.042 facilitated a better agreement between the potential and actual 

surface soil moisture, as revealed in Fig. 7 (a j s). Similar phenomena can also be found via a 
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comparison of Fig. 7e and Fig. 7n. 

 420 

Figure 7. The probability distributions (dotted curved line) of potential observation realizations as well as their 

mean (dotted vertical line) and the corresponding actual soil water content (SWC) observations (solid line) in the 

surface layer on the 81st, 90th, and 99th day at three sites under different measurement error variances being 0.012 

(TC4), 0.022 (TC1-1), and 0.042 (TC5), respectively 

 425 

  Fig. 8 shows the temporal evolution and time-averaged MAPE of the expected and reference 

data-worth in the form of three information indices, respectively, under various noise levels. Some 

interesting findings can be obtained: (1) Overall, the potential SWC data corrupted by a lower noise 

level yielded larger data-worth with higher accuracy. (2) Nevertheless, the occurrence of rainfall events 

triggered a futile DW increase while also rendering the potential observations with appropriately 430 

magnified observation errors more valuable. For instance, a properly inflated observation error of 0.022 

on the 88th day at the Falkenberg site resulted in a notably higher data-worth than that of 0.012, as 

highlighted by the dashed ellipse boxes in Fig. 8a and Fig. 8d. Furthermore, this increase in data-worth 

resulting from noise amplification was particularly evident in the form of Tr over the other two metrics, 

as depicted in Fig. 8(a-c) and Fig. 8(d-i). At DAHRA, potential observations with an observation error 435 

of 0.022 even produced a significantly higher Tr value than that of 0.012 throughout almost the entire 

simulation period (Fig. 8c). (3) As opposed to Tr and SED indices focusing only on the system 

uncertainty (variance or covariance), the expected RE, as a comprehensive mean-covariance-type 
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metric, was often more challenging to approach its reference counterparts with the largest MAPE at all 

sites, as shown in Fig. 8(j-l). 440 

 

Figure 8. The temporal evolution (a-i) and time-averaged MAPEs (j-l) of the expected and reference data-worth in 

the form of 𝑇𝑟, SED, and RE at three sites, respectively, under different measurement error variances being 0.012 

(TC4), 0.022 (TC1-1), and 0.042 (TC5), respectively 
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4.3 Effects of Prior Data Content (TC1-1/TC6/TC7) 

  Fig. 9(a-i) depicts the temporal evolution of the expected and reference data-worth of the surface 

SWC in cases TC6, TC1-1, and TC7 with the 40-day, 80-day, and 180-day prior data content, 

respectively. Under normal circumstances, an increase in the available prior data content inevitably 

entails a shrinkage in the DW of subsequent data due to the possibility of information redundancy. 450 

However, this seems to be valid only for a modest increase in prior data (from 40-day to 80-day) within 

our NP-DWA framework. The substantial augmentation in available data content from 80-day to 

180-day instead resulted in a notably higher DW of the additional data (Fig. 9). Even more 

unexpectedly, this DW growth was prevalent across sites, regardless of the soil types and climatic 

regimes. To clarify this anomaly, Fig. 10 further shows the predicted covariance matrixes of soil 455 

moisture profiles conditional on {𝑨} in prior stage and {𝑨, 𝑩} in preposterior stage in cases TC6, 

TC1-1, and TC7, respectively. Only the results from the 81st day to 90th day at Falkenberg are presented 

here. Our previous studies have demonstrated that although the mean values of potential samples can 

approach actual observations well in fully (Wang et al., 2021a) or partially (Zhang et al., 2019) 

data-driven dynamical systems, their ensemble was apt to suffer from considerable uncertainty (Wang 460 

et al., 2021b). Unfortunately, augmented prior data, despite its potential to enrich available GP training 

scenarios, failed to prevent the non-convergence of 𝑁𝑒 = 50 GP samples. In contrast, the additional 

noise associated with prior data supplementation could exacerbate the increase in the prior prediction 

uncertainty (i.e., 𝑪1), as illustrated by a comparison between the first three columns of Fig. 10. It 

should be highlighted that the fusion of B enabled a notable reduction in the preposterior uncertainties 465 

(i.e., 𝑪2) in the data assimilation system to a comparable level (the last three columns of Fig. 10), even 

with different prior data content. The gradual widening of the gap between 𝑪1 and 𝑪2 eventually 

yielded the highest data-worth with the maximum amount of prior data in test case TC7 (Fig. 9). This 

seems to alarm us that uncontrolled expansion of big data within fully data-driven systems may not be 

beneficial. The adverse effects of extra noise may overshadow its original superiority in generalization 470 

capability. Access to high-quality and representative “small” data may constitute the key to the 

successful application of fully data-driven algorithms for reshaping soil moisture dynamics. 
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Figure 9. The temporal evolution (a-i) and time-averaged MAPEs (j-l) of the expected and reference data-worth in 

the form of 𝑇𝑟, SED, and RE at three sites for cases TC6, TC1-1, and TC7 with 40-day, 80-day, and 180-day prior 475 

data content, respectively 
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Figure 10. The covariance matrixes of soil moisture profiles from the 81st day to 90th day at Falkenberg in the prior 

and preposterior stage for cases TC6, TC1-1, and TC7 with 40-day, 80-day, and 180-day prior data content, 

respectively 480 
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Furthermore, Fig. 9(j-l) depicts the time-averaged MAPE in the expected and reference data-worth in 

cases TC6, TC1-1, and TC7, respectively. A comparison of Fig. 9(a-i) and Fig. 9(j-l) reveals some 

interesting findings: (1) similar to the results in Sect. 4.1, the potential measurements with the largest 

expected (or reference) data-worth in TC7 are apt to possess the highest estimation accuracy of 485 

data-worth. (2) Local variations in data-worth at different sites respond slightly differently to the 

augmentation of prior data content. For instance, even with 180 days of available historical data, the 

DW spike induced by the unexperienced rainfall event on the 88th day at the Falkenberg has not been 

eliminated or diminished (Fig. 9(a d g)). However, similar DW surges on the 82nd day at Cape were 

successfully mitigated as the amount of prior data content increased from 40-day (TC6) to 80-day 490 

(TC1-1) (Fig. 9(e h)). This is because the prior data at Falkenberg, even if augmented to 180-day, did 

not cover the rainfall event on the 88th day (Fig. 2b), whereas the 80-day training data at Cape already 

included the scenario on the 82nd (Fig. 2d). These results agree with the conclusions reported in Wang 

et al. (2020) that the diversity of scenarios in the training data is more decisive than the data volume 

regarding the performance of data-driven methods. (3) Although inferior to 𝑇𝑟  and SED, the 495 

estimation accuracy of RE is generally acceptable, especially when prior data is expanded to 180 days. 

This is certainly a remarkable improvement over the rather poor performance of RE in traditional 

parametric data-worth analysis (Wang et al., 2018; Wang et al., 2020). This progress should be 

attributed to the radical abandonment of physical models in the NP-DWA, which prevented adverse 

effects of the high nonlinearity of soil water flow in the propagation of uncertainties from input to 500 

output (i.e., soil moisture in this study). Direct mapping from regular meteorological data to SWC 

facilitated the identification of the soil moisture covariance matrix from potential observations. 

4.4 Effects of potential observational combinations (TC1-1/TC8/TC9) 

  Fig. 11(a-i) compares the expected (and reference) data-worth of three combinations of potential 

observations at different depths at the three sites. It can be seen that the composite data-worth of the 505 

alternative monitoring schemes exhibited an increasing pattern as the depth range of the observed SWC 

continues to expand downward. Nevertheless, the response of the different data-worth indicators and 

study sites to this vertical expansion of potential observations varied slightly. Further integration of θD 

in TC9 did not cause a marked increase in Tr but yielded notably greater SED and RE values, especially 

at the DAHRA site (Fig. 11(c f d)). This is undoubtedly due to the extra consideration of the latter two 510 

indicators for the non-diagonal elements of the covariance matrix or/and the behavior of the mean. 
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Moreover, the joint fusion of potential θS and θM failed to result in a sustained increase in Tr and RE 

at DAHRA, while creating a significant increase in composite DW at the other two sites. This could be 

attributed to the sandy soil texture at DAHRA (with the fraction of sand up to 90%, and Ks= 3.22 m/d), 

resulting in the almost synchronous responses of the SWC at z=0.05 m and 0.50 m to the atmospheric 515 

boundary conditions (Fig. 2e) and thus triggering possible data redundancy. 

 

Figure 11. The temporal evolution (a-i) and time-averaged MAPEs (j-l) of the expected and reference data-worth 
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in the form of 𝑇𝑟, SED, and RE at three sites for cases TC1-1 (surface soil moisture), TC8 (surface & middle soil 

moisture), and TC9 (surface & middle & deep soil moisture), respectively 520 

 

Fig. 11(j-l) further shows the estimation accuracy of expected data-worth for the above three 

potential observation combinations. Surprisingly, the increase in the number of potential observations, 

while making it more difficult to “capture” actual SWC data, ends up significantly improving the 

accuracy of the data-worth assessment. As shown in Fig. 11(j-l), as more potential observations along 525 

the vertical direction were evaluated, the MAPEs between expected data-worth and its reference 

counterparts decreased continuously. This phenomenon actually breaks the misconceptions about the 

data-worth assessment accuracy in previous studies, i.e., that an excellent fit of potential observations is 

equivalent to high-precision estimates of the corresponding data-worth. For the sake of explanation, Fig. 

12 shows the predicted covariance matrixes of soil moisture profiles in cases TC1-1, TC8, and TC9 530 

from the 81st day to 90th day at Falkenberg conditional on {𝑨}, {𝑨,𝑩}, and {𝑨, 𝑩′}, respectively. It can 

be found that compared to TC1-1, which only reduces the uncertainties in the surface SWC, the 

integration of observations at multiple depths clearly reduces the uncertainties in the entire SWC 

profiles to a considerably lower level. This ultimately facilitates better proximity between expected and 

reference covariance matrixes, as revealed in the 4th and 7th columns in Fig. 12. The above results 535 

suggest that the accuracy of data-worth assessment of potential observations does not only depend on 

their capacity to “capture” actual measurements, but is also closely related to their correlation with the 

variable of interest. We recall that similar phenomena also exist in the preceding test cases. For 

example, the weaker correlation between surface SWC observations and 𝜃1.00
𝑎𝑣𝑒  led to deterioration in 

the DW estimation performance with the largest MAPE values (Fig.6(a d g)) even if the actual surface 540 

observations could be suitably reproduced (Fig. 3(a-c)). Therefore, to enhance the reliability of 

data-worth assessment, a strategy wherein potential observations at multiple depths were 

simultaneously incorporated into existing DA systems was recommended in this study. 
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Figure 12. The covariance matrixes of soil moisture profiles from the 81st day to 90th day at Falkenberg before 545 

(column 1) and after potential (columns 2-4) and actual observations (columns 5-7) for cases TC1-1 (surface soil 

moisture), TC8 (surface & middle soil moisture), and TC9 (surface & middle & deep soil moisture) were fused, 

respectively 
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Due to the widespread occurrence of model structural errors, it may lead to biased or wrong worth 

assessment. The strong nonlinearity of unsaturated flow further deteriorates the DW assessment 

performance in the retrieval of soil moisture profiles. This study proposed a nonparametric data-worth 

analysis method within a fully data-driven modeling framework. The information extracted from 555 

real-time soil moisture data after GP training and Kalman update was quantified with three 

representative types of indicators, i.e., variance- (Tr), covariance- (SED), and mean-covariance-type 

(RE) indicators. With the aid of a series of real-world cases, the ability and challenge of the NP-DWA 

in terms of the variables of interest, spatial location, observation error, and prior data content were 

assessed. The following conclusions were drawn: 560 

(1) The proposed NP-DWA framework enabled an accurate assessment of the data-worth of 

potential observations regarding the reconstruction of purely data-driven soil water flow models prior 

to data collection. Nevertheless, the overall increasing trend of the DW from the sequential 

augmentation of additional observations was susceptible to interruptions by localized surges due to 

never-experienced atmospheric conditions within the NP-DWA framework. Fortunately, the adverse 565 

effects of anomalous GP extrapolation in our nonparametric approach could be suitably avoided by the 

enrichment of training scenarios in prior data. Moreover, the appropriate amplification of observational 

noise under extreme meteorological conditions also facilitated the alleviation of this biased estimates 

by enhancing the generalization capacity of dynamic models. 

(2) The optimal observation depth shifted as the prediction target varied. In contrast to the notably 570 

higher DW of surface SWC observations within the conventional DW analysis framework, middle 

SWC observations tended to exhibit considerably higher robustness in the construction of model-free 

soil moisture dynamic models. This should be attributed to the ability of the SWC in the middle layer to 

effectively reduce the predictive uncertainty of the entire soil moisture profiles due to its optimal 

representativeness. The inherent delayed response of soil moisture profiles to rainfall events allowed 575 

this advantage of middle SWC prevalent across sites, even becoming increasingly pronounced with 

increasing delay effect. 

(3) Although the addition of prior data content could greatly improve the estimation accuracy of 

the expected DW, the ensuing observation noise could substantially increase the uncertainty in a purely 

data-driven DA system, leading to potentially higher data-worth of subsequent observations. Hence, 580 

high-quality and representative small data may be regarded as a better choice than unfiltered big data. 
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(4) An alternative monitoring strategy with a larger data-worth was prone to a higher DW 

assessment accuracy within the proposed NP-DWA framework. Specifically, the performance of 

data-worth assessment was jointly determined by ‘3Cs’, i.e., capacity of potential observation 

realizations to “capture” actual observations, correlation of potential observations with the predicted 585 

variables of interest, and choice of DW quantitative indicators. Furthermore, the direct mapping from 

regular meteorological data to SWC in our nonparametric method facilitated the identification of the 

soil moisture covariance matrix (especially the cross-covariance) due to its alleviation of highly 

nonlinearity of soil water flow problems. Hence, satisfactory estimation accuracy could also be 

achieved even with covariance-related data-worth metrics (i.e., the SED and RE). 590 
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